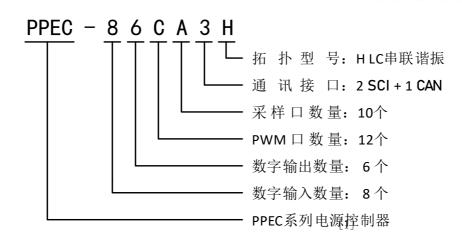


PPEC-86CA3H LC 串联谐振应用手册

PPEC-Programmable Power Electronics Controller

武汉森木磊石科技有限公司



PPEC-86CA3H介绍

PPEC (Programmable Power Electronics Controller),即可编程电力电子控制器,是武汉森木磊石科技有限公司研发的电源控制核心,依托PPEC Workbench图形化编程平台免代码编程,实现电源的快速研发。PPEC可降低电源研发企业对高层次人才的依赖,为电源研发企业降本增效。

PPEC-86CA3H 控制器

PPEC系列电源控制器产品型号

产品特点:

- ➤ 单3.3V电源供电
- ➤ 体积小: 25mm×25mm
- ➤ 支持作为Modbus从机
- ▶ 免代码开发
- ▶ 可远程控制

本手册为PPEC-86CA3H LC串联谐振拓 扑应用指南,对芯片特性、引脚封装及应 用于LC串联谐振的参考电路进行了描述。

PPEC系列电源控制器应用领域

直流电源、充电机、交流伺服系统、逆变器、PCS、UPS、变频器等。

PPEC系列电源控制器适用拓扑

移相全桥变换器、全桥LLC谐振变换器、 Buck/Boost半桥变换器、双向有源全桥变换器、 LC串联谐振变换器、单相逆变(整流)器、三相逆 变(整流)器、Vienna整流器等。

目录

1	概述	1
2	引脚	2
	2.1 引脚定义	2
	2.2 引脚描述	3
3	硬件特性	5
	3.1 电源及温度特性	5
	3.2 模拟输入电气特性	5
	3.3 数字输入电气特性	5
	3.4 数字输出电气特性	5
	3.5 PWM输出电气特性	6
4	参考电路	7
	4.1 LC串联谐振关键接口参考电路	7
	4.2 电源参考电路	8
	4.3 采样参考电路	8
	4.3.1 分压式电压电流采样参考电路	8
	4.3.2 双电源供电闭环霍尔电压传感器参考电路	. 11
	4.3.3 单电源供电闭环霍尔电压传感器参考电路	. 13
	4.3.4 双电源供电闭环霍尔电流传感器参考电路	. 14
	4.3.5 单电源供电闭环霍尔电流传感器参考电路	. 15
	4.4 数字量输入参考电路	. 15
	4.4.1 启停输入检测电路	. 15
	4.4.2 急停输入检测电路	. 17
	4.4.3 复位按键检测电路	. 17
	4.4.4 温度开关检测电路	. 18
	4.4.5 外部故障检测电路	. 18
	4.5 数字量输出参考电路	. 18
	4.6 PWM输出参考电路	. 19
	4.7 短路保护参考电路	. 19
	4.8 通讯接口电路	. 20
5	通讯协议	. 22
	5.1 接口说明	. 22

	5.2 通讯格式
	5.2.1 读取Modbus寄存器(功能码0x03)22
	5.2.2 给单个Modbus寄存器写数据(功能码0x06)23
	5.2.3 给多个Modbus寄存器写数据(功能码0x10) 24
	5.3 寄存器定义 25
6	功能及参数配置30
	6.1 系统参数 30
	6.1.1 权限分层实现 30
	6.1.2 从机地址修改31
	6.1.3 版本号31
	6.2 用户参数 32
	6.2.1 工作状态及运行参数显示 32
	6.2.2 电源控制指令33
	6.3 开发者参数 34
	6.3.1 电源控制参数 34
	6.3.2 开环调试功能
	6.3.3 采样及校正36
	6.3.4 预充电参数
	6.3.5 软件保护阈值39
	6.3.6 硬件保护阈值39
7	封装尺寸41
8	解析及注释

文件修订页

版本	修订说明	日期
V1. 0	V1.0发布	2023. 1. 6

1 概述

PPEC-86CA3H可以快速便捷的帮助用户进行LC串联谐振的开发,仅需要对关键参数进行配置即可完成全部软件开发工作,真正实现免代码开发。

PPEC-86CA3H控制器需搭配PPEC Workbench或屏幕来使用。有关步骤的详细情况,请参阅:

- ◆ 《PPEC Workbench 使用指南》
- ◆ 《PPEC-86CA3H 屏幕使用指南》

PPEC-86CA3H具有以下特点:

✓ 本地触摸屏显控

PPEC-86CA3H适配了触摸屏,通过触摸屏实现参数配置及调试功能。

✓ PPEC Workbench快速开发

PPEC Workbench进行参数配置、在线调试、波形显示,免代码完成开发。

✓ 远程控制

标准Modbus RTU协议,支持RS485总线接口,兼容性好,用户远程控制简单。

✓ 权限分层

通讯及屏幕权限分层, 开发者可操作全部调试参数, 用户仅可访问使用参数。

✓ 采样校准友好

采样通道校准简单, 快速。

✓ 工作模式切换

正充电、负充电、正负充电模式切换灵活; 充电时间与充电电流控制方式可供选择。

✓ 完善的保护功能

输入欠压、输入过压、输入过流、充电过压、充电过流、充电超时、短路、闪络、过温、硬件 保护等功能,阈值均可配置。

✓ 预充电电路控制

预充电电路适用于大功率数字电源,缓解上电冲击。

✓ 开环调试模式

调试友好、便捷、安全。

✓ 按键检测及继电器控制

外部按键实现启停、急停、复位操作,启动、故障灯显示控制。

2 引脚

2.1 引脚定义

图 2.1显示了PPEC-86CA3H封装64引脚分配。

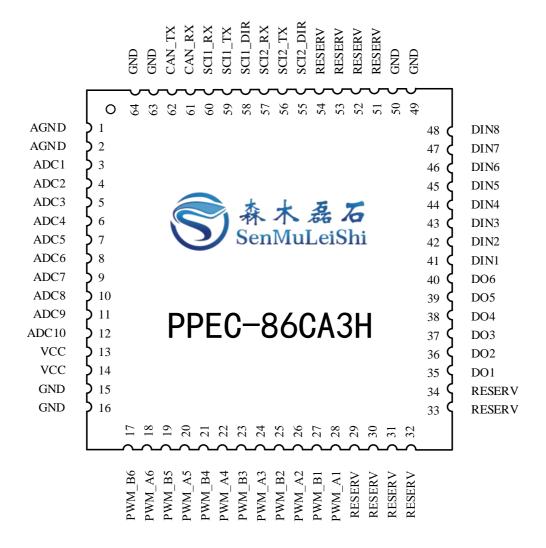


图 2.1 PPEC-86CA3H引脚分配图

2.2 引脚描述

表2.1 引脚定义

序号	名称	类型	描述
1-2	AGND	GND	模拟地,内部与数字地连接
3 6-12	ADCx	AI	预留模拟量输入,建议接模拟地
4	ADC2	AI	模拟量输入通道 2,对应输入电压采样通道
5	ADC3	AI	模拟量输入通道 3,对应输入电流采样通道
6	ADC4	AI	模拟量输入通道 4,对应输出正电压采样通道
7	ADC5	AI	模拟量输入通道 5,对应输出正电流采样通道
8	ADC6	AI	模拟量输入通道 6,对应输出负电压采样通道
9	ADC7	AI	模拟量输入通道 7,对应输出负电流采样通道
13-14	VCC	PWR	供电输入,建议提供 3.3V/1A 供电能力
15-16 49-50 63-64	GND	GND	数字地
17-24	PWMx	PO	预留 PWM 输出,保持悬空
25	PWM_2B	РО	PWM 通道 2B 输出,LC 串联谐振拓扑负高压通道 Q6 和 Q7 的驱动信号源(见图 4.1)
26	PWM_2A	РО	PWM 通道 2A 输出,LC 串联谐振拓扑负高压通道 Q5 和 Q8 的驱动信号源(见图 4.1)
27	PWM_1B	РО	PWM 通道 1B 输出,LC 串联谐振拓扑正高压通道 Q2 和 Q3 的驱动信号源(见图 4.1)
28	PWM_1A	РО	PWM 通道 1A 输出,LC 串联谐振拓扑正高压通道 Q1 和 Q4 的驱动信号源(见图 4.1)
29-34 51-54	Reserved	/	预留引脚,保持悬空
35	DO1	DO	数字输出通道 1,运行指示输出,运行时输出低电平
36	DO2	DO	数字输出通道 2,故障指示输出,故障时输出低电平
37	DO3	DO	数字输出通道 3, 预充电继电器控制, 动作时输出低电平
38	DO4	DO	数字输出通道 4, 主继电器控制, 动作时输出低电平
39	DO5	DO	数字输出通道 5 ,复位信号输出,动作时输出低电平
40	DO6	DO	预留数字输出通道 6,建议悬空

41	DIN1	DI	数字输入通道 1, 启动-停止信号输入, 低电平为启动 开机
42	DIN2	DI	数字输入通道 2, 急停信号输入, 高电平为急停
43	DIN3	DI	数字输入通道 3,故障复位信号输入,低电平为复位操作
44	DIN4	DI	数字输入通道 4,过温信号输入,高电平为过温故障
45	DIN5	DI	数字输入通道 5,故障信号输入,高电平为故障
46-48	DINx	DI	预留数字输入通道 6-8,建议接数字地
55	SCI2_DIR	DO	SCI2 收发控制,485 通信方式时使用,发送置低电平
56	SCI2_TX	DO	SCI2 TX 端,用于显控屏通讯
57	SCI2_RX	DI	SCI2 RX 端,用于显控屏通讯
58	SCI1_DIR	DO	SCI1 收发控制,485 通信方式时使用,发送置低电平
59	SCI1_TX	DO	SCI1 TX 端,用于上位机/PPEC Workbench 连接通讯
60	SCI1_RX	DI	SCI1 RX 端,用于上位机/PPEC Workbench 连接通讯
61	CAN_RX	DI	预留 CAN RX 端
62	CAN_TX	DO	预留 CAN TX 端

类型说明:

GND为参考电平,包括模拟地和数字地;

PWR为电源输入,特性参见3.1 电源及温度特性;

AI为模拟输入,特性参见3.2模拟输入电气特性;

DI为数字量输入(或通讯输入口),特性参见3.3数字输入电气特性;

DO为数字量输出(或通讯输出口),特性参见3.4数字输出电气特性;

PO为PWM输出,特性参见 3.5 PWM输出电气特性。

3 硬件特性

3.1 电源及温度特性

項目	符号	允许值		:	单位		
项目 符号		最小值	最大值	最小值	典型值	最大值	中业
供电电压	V_{cc}	-0.3	3.6	3.2	3.3	3.4	V
供电电流	I_{cc}	/	/	0.8	/	/	A
工作温度	T_{OPr}	-40	85	-40	25	85	°C
保存温度	t_{stg}	-60	125	-60	25	125	°C

3.2 模拟输入电气特性

項日	符号	允许值		额定工作参数			单位
项目	初五	最小值	最大值	最小值	典型值	最大值	1
模拟输入电压 ADC1~ADC10	V_{AIN}	-0.3	$V_{cc} + 0.3$	0	/	3	V

PPEC-86CA3H 内部集成 12bit ADC。

3.3 数字输入电气特性

項目	符号	允许值		额定工作参数			单位
项目	初五	最小值	最大值	最小值	典型值	最大值	半位
输入电平	V_{GPI}	-0.3	$V_{cc} + 0.3$	0	/	V_{cc}	V
输入高电平	V_{IH}	/	/	2.2	3.3	V_{cc}	V
输入低电平	V_{IL}	/	/	-0.3	0	0.6	V

数字输入内部弱上拉, 引脚未连接会识别为高电平。

3.4 数字输出电气特性

福口	<i>b</i> ; 口				
项目	符号	最小值	典型值	最大值	单位
输出高电平	V_{OH}	/	V_{cc}	/	V
输出低电平	V_{OL}	/	0	/	V
输出高电平拉电流	I_{OH}	/	/	4	mA
输出低电平灌电流	I_{OL}	/	/	-4	mA
总输出拉电流(含 PWM)	I_{OH_ALL}	/	/	20	mA

总输出灌电流(含	1	,	,	20	A
PWM)	I _{OL_ALL}	/	/	-20	mA

3.5 PWM输出电气特性

番目	/s/s 口.		公 <i>仁</i>		
项目	符号	最小值	典型值	最大值	单位
输出高电平	V_{PWMH}	/	V_{cc}	/	V
输出低电平	V_{PWML}	/	0	/	V
输出高电平拉电流	I_{PWMH}	/	/	4	mA
输出低电平灌电流	I_{PWML}	/	/	-4	mA

4 参考电路

4.1 LC串联谐振关键接口参考电路

下图给出了LC串联谐振关键接口参考电路。驱动管及采样对应通道在图中已给出,可参考本图进行整体电路设计。

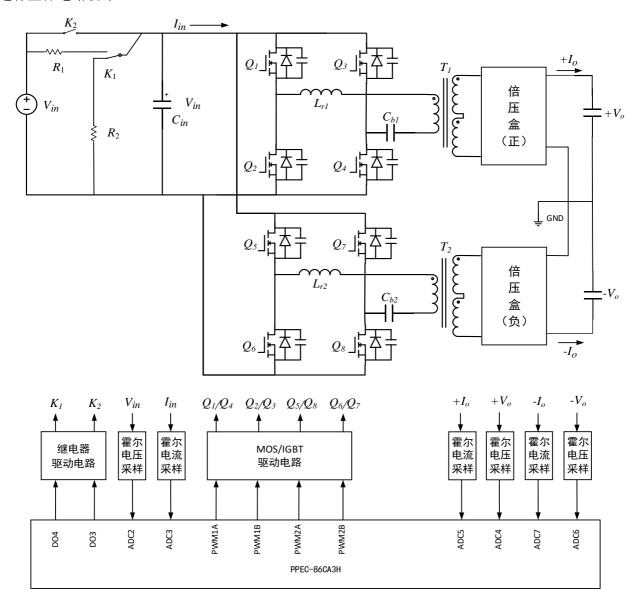


图 4.1 LC串联谐振关键接口参考电路

输入电压 V_{in} 采样通过采样及调理电路(可参考4.3采样参考电路)后,接到ADC2通道;输入电流 I_{in} 采样通过采样及调理电路(可参考4.3采样参考电路)后,接到ADC3通道;输出正电压 $+V_o$ 采样通过采样及调理电路(可参考4.3采样参考电路)后,接到ADC4通道;输出正电流 $+I_o$ 采样通过采样及调理电路(可参考4.3采样参考电路)后,接到ADC5通道;

输出负电压 $-V_o$ 采样通过采样及调理电路(可参考4.3采样参考电路)后,接到ADC6通道;输出负电流 $-I_o$ 采样通过采样及调理电路(可参考4.3采样参考电路)后,接到ADC7通道;

LC串联谐振驱动 Q_1 、 Q_4 信号来自于PWM1A通道, Q_1 、 Q_4 需要单独的隔离驱动电路;

LC串联谐振驱动 Q_2 、 Q_3 信号来自于PWM1B通道, Q_2 、 Q_3 需要单独的隔离驱动电路;

LC串联谐振驱动 Q_5 、 Q_8 信号来自于PWM2A通道, Q_5 、 Q_8 需要单独的隔离驱动电路;

LC串联谐振驱动 Q_6 、 Q_7 信号来自于PWM2B通道, Q_6 、 Q_7 需要单独的隔离驱动电路;

 R_1 为预充电电阻, R_2 为泄能电阻,根据应用场合需要可以去掉 R_2 及 K_1 。

预充电继电器 K_1 驱动信号来自于DO3,驱动电路可参考4.5数字量输出参考电路; 主继电器 K_2 驱动信号来自于DO4,驱动电路可参考4.5数字量输出参考电路。

4.2 电源参考电路

供电电源芯片需选用线性LDO电源芯片,输出需满足3.1 电源及温度特性,参考电路如下。

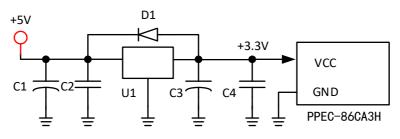


图 4.2 LDO供电参考电路

U₁双为线性LDO电源芯片,参考型号: LM1117DT-3.3/NOPB;

 C_1 、 C_3 为滤波电容器,参考选用100uF/10V固态电解电容;

C2、C4为去耦电容,参考选用10nF/50V/X7R/0603;

 D_1 为保护二极管,参考选用1N5819WS。

4.3 采样参考电路

参见3.1电源及温度特性,模拟输入端口可识别的电压为3.0V,因此建议通过采样及调理电路,将额定最高输出电压电流控制在2.2V左右,优先考虑分压式采样电路。

4.3.1 分压式电压电流采样参考电路

由于LC串联谐振拓扑的输出电压较大,故对输出电压进行采样时需先进行分压再接入采样参考 电路中。电阻分压方式需要注意两点:首先是避免运放负载效应影响分压比,分压电路流经的电流需 要远大于运放的输入偏置电流;其次是分压电阻的发热功率应小于额定功率的1/5,避免发热影响采 样精度。

(1) 低压输出整流电路

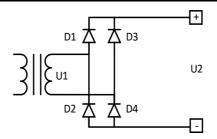


图 4.3 整流参考电路

低压输出(输出电压小于20kV)可直接采用整流电路,假设 U_1 为输出最高电压,二极管/硅堆 $D_1 \sim D_4$ 直流反向耐压应为 $2U_1$,整流硅堆通流能力I应大于等于5倍的输出电流值。例如 U_1 为20kV时,二极管可参考型号2CL40kV/5A。

(2) 高压输出倍压整流电路

当整流电流很小时,可以采用多级倍压整流电路获得很高的直流电压。倍压电路采用由电容与二极管构成的倍压整流电路,10倍正压整流的参考电路如图 4.4:

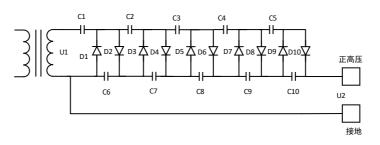


图 4.4 10倍正压参考电路

 U_1 为倍压电路输入电压, U_2 为倍压电路输出电压。两者与倍压等级n的关系为: $U_2 \approx nU_1$ 。二极管的耐压值应选择输出电压的3~4倍除以倍压等级系数n,即每个二极管耐压应不小于(3~4) $\frac{U_2}{n}$,二极管通流参考值为 $5nI_o$ 。二极管需要使用快恢复二极管,同时为防止短路烧二极管,选用的二极管最大浪涌需要尽量大。

电容的耐压值可以留2.5~3倍的裕量来考虑,即 $\frac{(2.5\sim3)U_2}{n}$; 电容容值则需根据开关频率 f_s 等综合因素来考虑,其中开关频率 f_s 应小于谐振频率 f_r 的一半;根据电荷量 $Q=C\cdot U=I\cdot t$ 可得:

$$C = \frac{Id_t}{d_u} = \frac{\int_0^t d_i}{d_u} = \frac{nI_o \frac{1}{2f_s}}{0.1 \frac{U_2}{n}} = \frac{I_o n^2}{0.1 U_2 f_s}$$

故电容参考值选择应大于 $\frac{I_o n^2}{0.1 U_2 f_s}$ 。其中 I_o 为输出电流值,n为倍压等级, U_2 为输出电压, f_s 为开关 频率。10倍负压整流的参考电路如图 4.5:

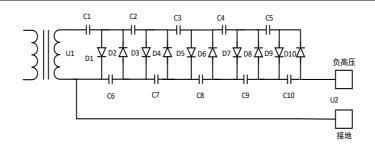


图 4.5 10倍负压参考电路

功率回路及控制回路需要单点连接降低干扰,分压电路。

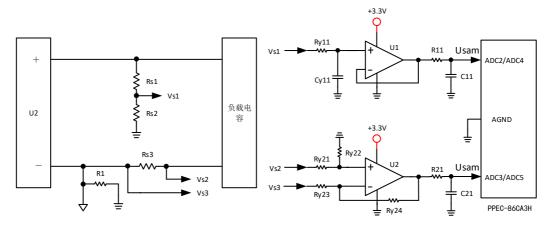


图 4.6 分压采样在输出功率回路的检测器件

 R_1 为功率回路和控制回路等电位连接点,采用单点连接方案,参考选用 0R/5%/0805;

 U_1 、 U_2 运放需要选取低压轨至轨、低失调电压运放,参考型号OPA333AIDR,建议与PPEC-86CA3H同电源供电;

 R_{11} 、 C_{11} 、 R_{21} 、 C_{21} 为低通滤波器,参考选用 1K/1%/0603 及 10nF/50V/X7R/0603;

 R_{v11} 、 C_{v11} 为低通滤波器,参考选用 1K/1%/0603 及 1nF/50V/X7R/0603;

 R_{s1} 、 R_{s2} 在额定工作电压下的分压值建议选取在2V~2.2V之间,且发热功率小于额定功率的1/5,针对不同电压等级,推荐 R_{s1} 、 R_{s2} 阻值选取参考(全部电阻均为E96表内阻值)。

额定 电压	R_{s1}	R_{s2}	理论增益	额定 电压	R_{s1}	R_{s2}	理论增益
100V	1.45M/0.1W		49.3	5000V	75M/1.5W		2501
200V	2.95M/0.1W	30K 精密 电阻	99.3	10kV	150M/3W	30K 精密 电阻	5001
500V	7.47M/0.2W		248.8	20kV	300M/6.5W		10001
1000V	15M/0.3W		501	50kV	750M/15W		25001

表 4.1 电阻分压式电压采样阻值选取参考

1500V	22.4M/0.5W	747.7	100kV	1.5G/35W	50001
2000V	29.95M/0.75W	999.3	150kV	2.25G/50W	75000
3000V	44.96M/1W	1499.7	200kV	3G/70W	100000

分压式采样 理论偏置^[7]为0。

推荐 R_{s3} 、 R_{y21} 、 R_{y22} 、 R_{y23} 、 R_{y24} 阻值选取参考(全部电阻均为E96表内阻值)。

表 4.2 电阻分压式电压采样阻值选取参考

额定电流	R_{s3}	R_{y21} , R_{y23}	R_{y22} , R_{y24}	理论增益[6]
0.1mA	10k Ω/无感电阻	10K/1%/0603	200K/1%/0603	0.00005
0.5mA	2k Ω/无感电阻	10K/1%/0603	200K/1%/0603	0.00025
1mA	1k Ω/无感电阻	10K/1%/0603	200K/1%/0603	0.0005
5mA	200 Ω/无感电阻	10K/1%/0603	200K/1%/0603	0.0025
10mA	100 Ω/无感电阻	10K/1%/0603	200K/1%/0603	0.005
20mA	50 Ω/无感电阻	10K/1%/0603	200K/1%/0603	0.01
50mA	20 Ω/无感电阻	10K/1%/0603	200K/1%/0603	0.025
100mA	1 Ω/无感电阻	10K/1%/0603	200K/1%/0603	0.05
500mA	200 mΩ/无感电阻	10K/1%/0603	200K/1%/0603	0.25
1A	100mΩ/无感电阻	10K/1%/0603	200K/1%/0603	0.5
5A	20mΩ/无感电阻	10K/1%/0603	200K/1%/0603	2.5

分压式采样 理论偏置^[7]为0。

4.3.2 双电源供电闭环霍尔电压传感器参考电路

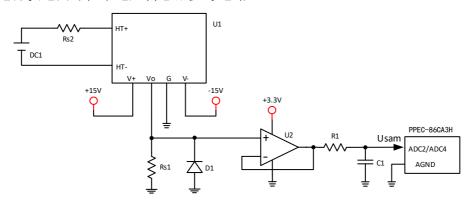


图 4.7 双电源供电闭环霍尔电压传感器参考电路

电压型霍尔用于直流母线电压采样。

 U_1 双电源供电闭环霍尔电流传感器,参考型号: 宇波模块CHV-25P(600V)、CHV-50P (1200V); U_2 运放需要选取低压轨至轨运放,参考型号RS6331BXF,建议与PPEC-86CA3H同电源供电; R_1 、 C_1 为低通滤波器,参考选用 1K/1%/0603 及 10nF/50V/X7R/0603;

 R_{s2} 阻值选取:被测量DC1的额定电压 V_n 作用下通过 R_{s2} 的电流建议在霍尔额定输入电流 I_n 的 0.66~0.75范围内,即:

$$0.66I_n < \frac{V_n}{R_{s2}} < 0.75I_n$$

 R_{s1} 阻值选取:额定最高电压 V_n ,对应采样电压应在2.0V~2.2V范围内,霍尔传输比为n,即:

$$2.0V < \frac{V_n R_{s1}}{R_{s2}} n < 2.2V$$

D₁为钳位二极管,推荐选型为1N5819WS;

为了避免采样电阻发热导致的误差,采样电阻 R_{s1} 、 R_{s2} 实际发热功率应小于额定功率的1/5。针对不同电压等级,推荐 R_{s1} 、 R_{s2} 阻值选取参考(全部电阻均为E96表内阻值)。

表 4.3 双电源霍尔电压采样阻值选取参考

额定电压	霍尔型号	R_{s2}	R_{s1}	理论增益[6]
5V		499Ω/1%/0.5W		2.489
12V		1.2K/1%/1W		5.985
24V		2.4K/1%/2W	920/10//1206	11.97
48V		4.75K/1%/3W	- 82Ω/1%/1206	23.69
72V	CHW 25D	7.25K/1%/5W		36.16
100V	CHV-25P	10K/1%/5W		49.88
200V		40.2K/1%/5W	160Ω/1%/1206	100.5
320V		120K/1%/5W 2并		150
400V		160K/1%/5W 2并	160Ω/1%/1206	200
500V		300K/1%/5W 3并		250
600V		49.9K/1%/5W 3串	200Ω/1%/1206	299.4
800V	78.7K/1%/5W 3串		240Ω/1%/1206	393.5
1000V	CHV-50P	130K/1%/5W 3串	2200/10//1207	472.7
1200V		120K/1%/5W 4串	- 330Ω/1%/1206	581.8

双电源供电霍尔的理论偏置[7]为0。

理论增益 及 理论偏置 可用于初步采样校正,详见6.3.3采样及校正。

 R_{s1} 、 R_{s2} 精度1%为最低标准,建议选取更高精度电阻。

4.3.3 单电源供电闭环霍尔电压传感器参考电路

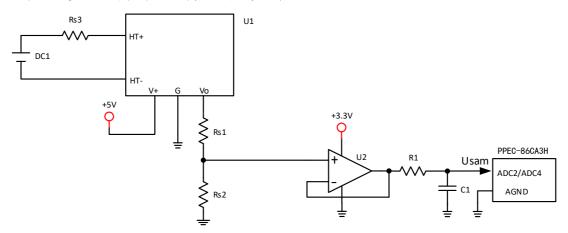


图 4.8 单电源供电闭环霍尔电压传感器参考电路

 U_1 单电源供电闭环霍尔电流传感器参考型号: HVS-AS5-5;

 U_2 运放需要选取低压轨至轨运放,参考型号RS6331BXF,建议与PPEC-86CA3H同电源供电;

 R_1 、 C_1 为低通滤波器,参考选用 1K/1%/0603 及 10nF/50V/X7R/0603;

 $R_{\rm S1}$ 参考选用 20K/1%/0603, $R_{\rm S2}$ 参考选用 30K/1%/0603,将2.5V偏置电压分压至1.5V。

 R_{s3} 阻值选取:在额定最高电压 V_n 作用下通过 R_{s3} 的电流建议在霍尔测量范围 I_p 的0.66~0.75范围内,即:

$$0.66I_p < \frac{V_n}{R_{c2}} < 0.75I_p$$

为了避免采样电阻发热导致的误差,采样电阻 R_{s3} 实际发热功率应小于额定功率的1/5。

额定电压	R_{s3}	理论增益[6]	额定电压	R_{s3}	理论增益[6]
5V	420Ω/1%/0.5W	5.6	320V	120K/1%/5W 2并	800
12V	1K/1%/1W	13.33	400V	160K/1%/5W 2并	1067
24V	2K/1%/2W	26.67	500V	300K/1%/5W 3并	1333
48V	4.02K/1%/3W	53.6	600V	49.9K/1%/5W 3串	1996
72V	6.04K/1%/5W	80.53	800V	不建议	
100V	10K/1%/5W	133.3	1000V	不建议	
200V	40.2K/1%/5W	536	1200V	不建议	

表 4.4 单电源霍尔电压采样阻值选取参考

霍尔型号: HVS-AS5-5,单电源供电霍尔的 理论偏置[7]为1.5V(分压后)。

 R_{s1} 、 R_{s2} 、 R_{s3} 精度1%为最低标准,建议选取更高精度电阻。

4.3.4 双电源供电闭环霍尔电流传感器参考电路

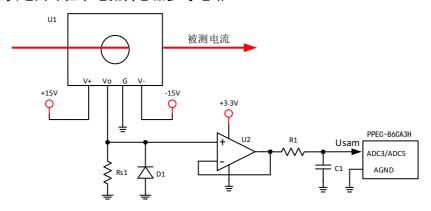


图 4.9 双电源供电闭环霍尔电流传感器参考电路

 U_1 双电源供电闭环霍尔电流传感器参考型号: 宇波模块LA-100P(100A)、CHB-200P(200A); U_2 运放需要选取低压轨至轨运放,参考型号RS6331BXF,建议与PPEC-86CA3H同电源供电; R_1 、 C_1 为低通滤波器,参考选用 1K/1%/0603 及 10nF/50V/X7R/0603;

 R_{s1} 阻值选取:输出最大电流 I_n ,对应采样电压应在2.0V~2.2V范围内,霍尔传输比为n,即:

$$2.0V < nI_nR_{s1} < 2.2V$$

D₁为钳位二极管,推荐选型为1N5819WS;

为了避免采样电阻发热导致的误差,采样电阻 R_{s1} 实际损耗应小于额定功率的1/5。 针对不同电流等级,推荐 R_{s1} 阻值选取参考(全部电阻均为E96表内阻值)。

表 4.5 双电源霍尔电流采样器件选取参考

额定电流	霍尔型号	R_{s1}	理论增益[6]
1A	CHB-25NP (5A连接方式)	430Ω/1%/1206	0.4651
2A	CHB-25NP (5A连接方式)	210Ω/1%/1206	0.9524
5A	CHB-25NP (5A连接方式)		2.439
8A	CHB-25NP (8A连接方式)	82Ω 1%	4.065
12A	CHB-25NP (12A连接方式)	2512	6.098
25A	CHB-25NP (25A连接方式)		12.2
50A	CHB-50A	43Ω/1%/2512	23.26
100A	CHB-100S	21Ω/1%/1W	47.62

14

150A	CHB-150P	28Ω/1%/2512	71.43
200A	CHB-200S	$21\Omega/1\%/1W$	95.24
300A	CHB-300SG	14Ω/1%/2W	142.9
500A	CHB-500SG	21Ω/1%/1W	238.1

双电源供电霍尔的理论偏置[7]为0。

 R_{s1} 精度1%为最低标准,建议选取更高精度电阻。

4.3.5 单电源供电闭环霍尔电流传感器参考电路

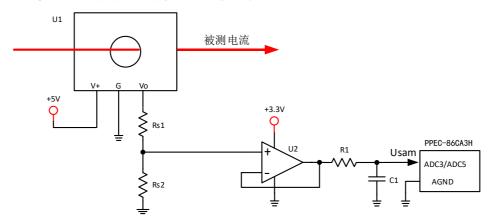


图 4.10 单电源供电闭环霍尔电流传感器参考电路

 U_1 单电源供电闭环霍尔电流传感器参考型号: 宇波模块CHB-15MP(48A);

 U_2 运放需要选取低压轨至轨运放,参考型号RS6331BXF,建议与PPEC-86CA3H同电源供电;

 R_1 、 C_1 为低通滤波器,参考选用 1K/1%/0603 及 10nF/50V/X7R/0603;

 R_{s1} 参考选用 20K/1%/0603, R_{s2} 参考选用 30K/1%/0603, 精度1%为最低标准,建议选取更高精度电阻。

单电源供电霍尔的 理论偏置[7]为1.5V(分压后)。

针对不同电流等级, 选型参考如下表。

表 4.6 单电源霍尔电流采样器件选取参考

额定电流	霍尔型号	理论增益[6]
<15A	СНВ-6МР	9.6
15A-40A	CHB-15MP	24
40-67A	CHB-25MP	40

4.4 数字量输入参考电路

数字量输入建议用缓冲器、电平转换芯片或光耦做缓冲。

4.4.1 启停输入检测电路

若不使用外部按键作为启停控制,该引脚使用3.3K电阻上拉到+3.3V。

单自锁按键启停控制方案,参考电路见下图。

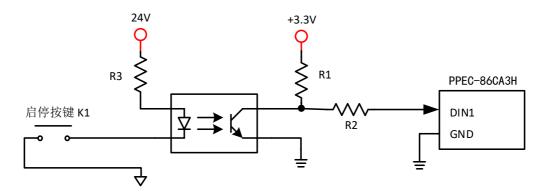


图 4.11 单键启停控制参考电路

 K_1 闭合时DIN1为低电平电源启动输出,断开时DIN1为高电平电源停止输出。

U₁光耦参考型号: TLP181GB;

R₁、R₂、R₃参考选用3.3K/1%/0603、22R/1%/0603、20K/1%/0805;

K₁选用自锁按键,参考型号为: LA39-A1-11T/g。

双自复位按键启停控制方案,参考电路见下图。

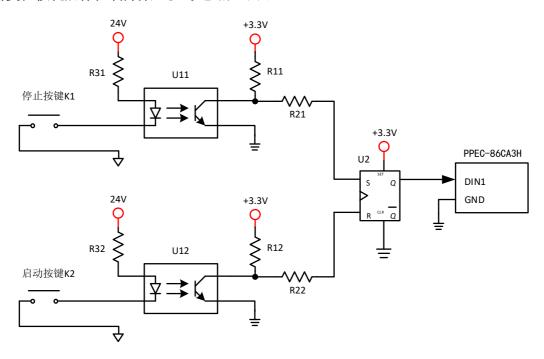


图 4.12 双键启停控制参考电路

 K_1 、 K_2 使用常开触点, K_2 按下RS锁存器R端置低,Q输出低电平,DIN1为低电平电源启动输出; K_1 按下RS锁存器S端置低,Q输出高电平,DIN1为高电平电源停止输出。

*U*₁₁、*U*₁₂光耦参考型号: TLP181GB;

 R_{11} 、 R_{12} 参考: 3.3K/1%/0603, R_{21} 、 R_{22} 参考: 22R/1%/0603, R_{31} 、 R_{32} 参考: 20K/1%/0805;

K₁、K₂参考型号分别为: LA39-A1-11/g、LA39-A1-11/r;

*U*₂ RS锁存器参考型号: CD4044BPWR, 使用+3.3V供电。

4.4.2 急停输入检测电路

若不使用外部按键作为急停保护,该引脚短接到数字地。

做急停保护时, K_1 选用常闭型急停开关,正常时急停开关内部闭合,DIN2为低电平,急停开关拍下时急停开关内部断开,DIN2为高电平,参考电路见下图。

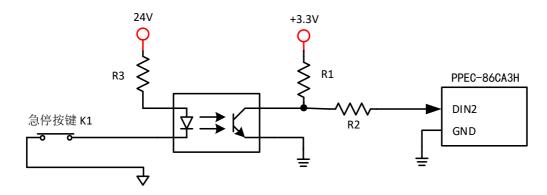


图 4.13 急停检测参考电路

U₁光耦参考型号: TLP181GB;

 R_1 、 R_2 、 R_3 参考选用3.3K/1%/0603、22R/1%/0603、20K/1%/0805;

K₁参考型号为: LA39-B2-11Z/r。

4.4.3 复位按键检测电路

若不使用外部按键进行复位操作,该引脚使用3.3K电阻上拉到+3.3V。

使用外部按键进行复位操作, K_1 选用自复位按键常开触点,正常时开关内部断开,DIN3为高电平,按下复位按键开关闭合,DIN3为低电平,PPEC-86CA3H识别到低电平执行故障复位流程,参考电路见下图。

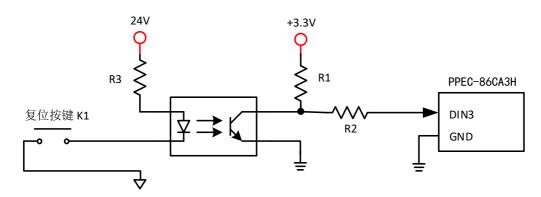


图 4.14 复位检测参考电路

17

U₁光耦参考型号: TLP181GB;

 R_1 、 R_2 、 R_3 参考选用3.3K/1%/0603、22R/1%/0603、20K/1%/0805;

K₁参考型号为: LA39-A1-11/y。

4.4.4 温度开关检测电路

若不使用温度开关作为过温保护,该引脚短接到数字地。

使用温度开关做过温保护时, K_1 选用常闭型温度开关,正常时温度开关内部闭合,DIN4为低电平,过温时,温度开关断开,DIN4为高电平,PPEC-86CA3H识别到高电平停止输出。

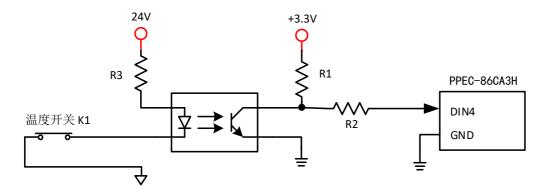


图 4.15 温度开关检测参考电路

*U*₁光耦参考型号: TLP181GB;

 R_1 、 R_2 、 R_3 参考选用3.3K/1%/0603、22R/1%/0603、20K/1%/0805;

 K_1 参考型号为: KSD9700常闭型。

4.4.5 外部故障检测电路

此输入为实现硬件保护功能,详细设计参见图 4.18。

若不使用此输入,将此输入短接到数字地。

4.5 数字量输出参考电路

数字量输出建议用缓冲器、电平转换芯片做缓冲,再经过三极管驱动继电器,参考电路见下图:

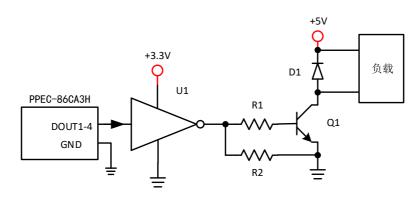


图 4.16 数字量输出参考电路

18

U₁反相器参考型号: SN74LVC1G04DCKR;

R₁、R₂参考选用 1K/1%/0603、10K/1%/0603;

*Q*₁、*D*₁参考选用: MMBT5551、RS1M;

负载可以为继电器线圈(大功率继电器需要增加中间继电器)、LED灯、蜂鸣器等。

4.6 PWM输出参考电路

PWM输出建议用缓冲器、电平转换芯片做缓冲后输出至驱动电路(非直接驱动开关管),参考电路见下图:

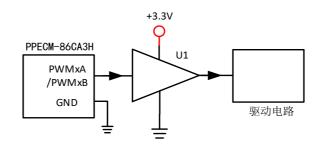


图 4.17 PWM输出参考电路

 U_1 缓冲器参考型号: SN74LVC1G07DCKR;

4.7 短路保护参考电路

图 4.18电路可实现短路保护、快速过流保护功能,短路保护时间优于5us, PPEC-86CA3H预留IO口, 实现硬件故障复位、外部故障检测(软件显示)功能。

例:输入电流超过120A时需要进行保护,此时对应的ADC口电压为2.6V,将输入电流对应通道连接到比较器 U_1 负输入,比较器 U_1 正输入连接分压电阻,分压值选取为2.6V,当 U_1 负输入高于正输入端时,比较器输出0V,RS锁存器 U_2 的Q端输出低电平,将PWM驱动封锁,同时将故障信号送到DIN5口,PPEC-86CA3H可检测到外部故障停机;通过屏幕/上位机/复位按键执行复位程序时,DOS输出低电平,RS锁存器 U_2 的Q端输出高电平,将PWM驱动解除封锁。

多个采样通道硬件保护,可以将多个RS锁存器U2的Q端通过与门再控制各PWM,见图 4.18。

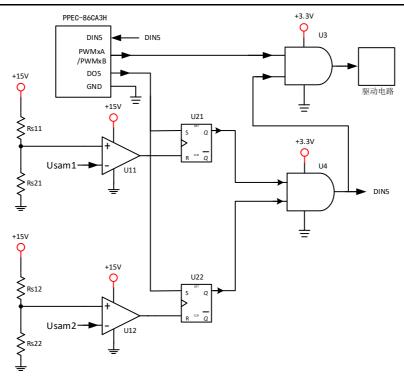


图 4.18 多路保护的PWM输出参考电路

图中, Usam来自图 4.7~图 4.10中运放输出。

*U*₁₁、*U*₁₂比较器参考型号: LMV331IDCKR;

*U*₂₁、*U*₂₂ RS锁存器参考型号: CD4044BPWR;

 U_3 、 U_4 与门参考型号: SN74LVC1G08DCKR;

 R_{s1} 、 R_{s2} 参考选用 1%/0603 电阻,阻值根据保护时采样口电压确定。

4.8 通讯接口电路

通讯接口电路建议用232/485电平转换芯片做缓冲,参考电路见下图:

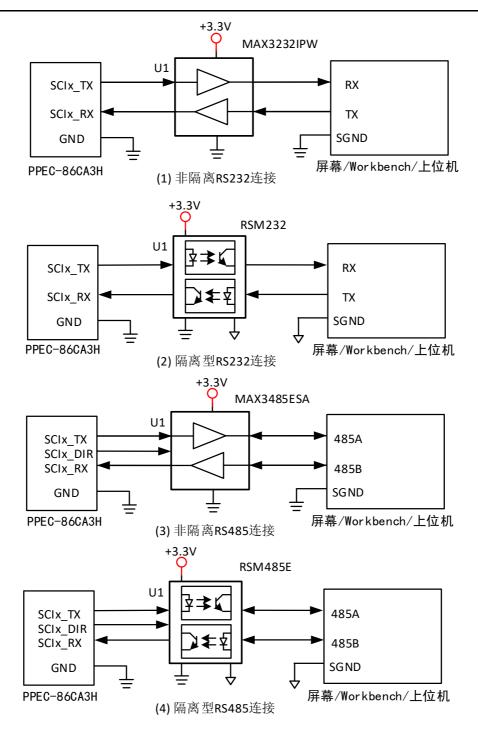


图 4.19 通讯参考电路

上位机/PPEC Workbench连接到SCI1通道,屏幕连接到SCI2通道。

图中给出了参考器件型号,未对外围器件进行详细描述,注意上下拉电阻、匹配电阻等外围器件选型与连接。

5 通讯协议

5.1 接口说明

SCI1通讯接口,用于上位机/PPEC Workbench连接通讯,采用Modbus-RTU通讯协议。PPEC-86CA3H作为从机,默认从机地址为0x01,可修改。

预留RS485方向控制引脚SCI1_DIR,可以使用RS232、RS485总线做远程控制。

PPEC-86CA3H的SCI1通讯接口配置如下:

 项目
 参数

 波特率
 38400bps

 数据位
 8bit

 校验位
 None

 停止位
 1bit

表 5.1 通讯接口配置

5.2 通讯格式

采用Modbus-RTU通讯协议。通过0x03/0x06/0x10功能码实现寄存器数据的存取。

5.2.1 读取Modbus寄存器(功能码0x03)

读取Modbus寄存器数据。一次性读取寄存器数量不要超过40个。

举例,读Modbus寄存器数据,开始寄存器地址为0x01,数量为2,上位机指令:

字节序号	定义	实例	备注
1	地址	0x01	默认地址
2	功能码	0x03	
3	寄存器起始地址高8位	0x00	
4	寄存器起始地址低8位	0x01	
5	寄存器数量高8位	0x00	
6	寄存器数量低8位	0x02	
7	CRC16校验高8位	0x95	
8	CRC16校验低8位	0xCB	

表 5.2 读取Modbus寄存器指令

PPEC-86CA3H收到数据后,响应如下:

表 5.3 读取Modbus寄存器响应

字节序号	定义	实例	备注
1	地址	0x01	默认地址
2	功能码	0x03	
3	数据字节数量	0x04	
4	数据1高8位	0x00	
5	数据1低8位	0x01	
6	数据2高8位	0x00	
7	数据2低8位	0x02	
8	CRC16校验高8位	0x2A	
9	CRC16校验低8位	0x32	

5.2.2 给单个Modbus寄存器写数据(功能码0x06)

把一个值写入到一个Modbus寄存器中。

举例,给地址为0x01的Modbus寄存器写入0x01数据,上位机指令:

表 5.4 写入单个Modbus寄存器指令

字节序号	定义	实例	备注
1	地址	0x01	默认地址
2	功能码	0x06	
3	寄存器地址高8位	0x00	
4	寄存器地址低8位	0x01	
5	被写入数据高8位	0x00	
6	被写入数据低8位	0x01	
7	CRC16校验高8位	0x19	
8	CRC16校验低8位	0xCA	

PPEC-86CA3H收到数据后,响应如下:

表 5.5 写入单个Modbus寄存器响应

字节序号	定义	实例	备注
1	地址	0x01	默认地址
2	功能码	0x06	
3	寄存器地址高8位	0x00	
4	寄存器地址低8位	0x01	
5	被写入数据回读高8位	0x00	
6	被写入数据回读低8位	0x01	
7	CRC16校验高8位	0x19	
8	CRC16校验低8位	0xCA	

5.2.3 给多个Modbus寄存器写数据(功能码0x10)

给多个Modbus寄存器写数据。一次性写入数据的寄存器数量不要超过40个。

举例,给地址为0x01及0x02的Modbus寄存器写入0x0001、0x0002数据,上位机指令:

表 5.6 写入多个Modbus寄存器指令

字节序号	定义	实例	备注
1	地址	0x01	默认地址
2	功能码	0x10	
3	寄存器起始地址高8位	0x00	
4	寄存器起始地址低8位	0x01	
5	写入数据数量高8位	0x00	
	写入数据数量低8位	0x02	
6	数据字节数	0x04	
7	被写入数据1高8位	0x00	
8	被写入数据1低8位	0x01	
9	被写入数据2高8位	0x00	
10	被写入数据2低8位	0x03	
11	CRC16校验高8位	0xE2	
12	CRC16校验低8位	0x62	

PPEC-86CA3H收到数据后,响应如下:

表 5.7 写入多个Modbus寄存器响应

字节序号	定义	实例	备注
1	地址	0x01	默认地址
2	功能码	0x10	
3	寄存器起始地址高8位	0x00	
4	寄存器起始地址低8位	0x01	
5	写入数据数量高8位	0x00	
6	写入数据数量低8位	0x02	
7	CRC16校验高8位	0x19	
8	CRC16校验低8位	0xCA	

5.3 寄存器定义

下表为寄存器地址及定义表,各地址详细介绍及作用参见6功能及参数配置。

表 5.8 PPEC-86CA3H Modbus 寄存器定义

र अन	أبل أبل	类型 ^[2]	权限 ^[3]	5	定义	
名称	地址	也如.		量纲[4]	范围	默认值
工作状态 1	0	Uint16	0x00 预充电中 0x01 就绪/停止 0x02 运行 0x03 故障			
工作状态 2	1	Uint16Rbit0=1 预充继电器闭合 bit1=1 主继电器闭合				
故障状态 1	2	Uint16	R	bit0=1 输入欠压 bit1=1 输入过压 bit2=1 输入过流 bit3=1 充电正过压 bit4=1 充电正过流 bit5=1 充电负过压 bit6=1 充电负过压 bit7=1 短路故障 bit7=1 短路故障 bit8=1 充电超时 bit9=1 闪络故障		

				bit10=1 过温 bit11=1 急停 bit11=1 急停 bit12=1 外部故障 bit13=1 硬件输入过流 bit14=1 硬件充电过压 bit15=1 硬件充电过流		
故障状态 2	3	Uint16	R	bit0=1 fla	ısh 存储异常	
ADC1 结果	4	Uint16	R	未	使用	
ADC2 输入电压	5	Uint16	R	0.1V	0~6500.0V	
ADC3 输入电流	6	Uint16	R	0.01A	0~650.00A	
ADC4 输出正电压	7	Uint16	R	0.01kV	0~650.00kV	
ADC5 输出正电流*	8	Uint16	R	0.01mA 0.001A 0.01A	0.01~100mA 0.001~10A 0.01~100A	
ADC6 输出负电压	9	Uint16	R	0.01kV	-650.00~0kV	
ADC7 输出负电流*	10	Uint16	R	0.01mA 0.001A 0.01A	0.01~100mA 0.001~10A 0.01~100A	
ADC 8-10 结果	11-13	Uint16	R	未使用		
预留	14-29			未使用		
指令	30	Uint16	W	0x01 启动(PWM 输出) 0x02 停止(PWM 停止) 0x03 故障复位 0xAA 存储数据到 flash 0xBB 恢复默认参数		
工作模式	31	Uint16	RW	0x00 正充电模式:时间 控制方式 0x01 正充电模式:电流 控制方式 0x02 负充电模式:时间 模式方式 0x03 负充电模式:电流 控制方式 0x04 正负充电模式:时间间控制方式		0x00

				0x05 正负充电模式: 电 流控制方式 0x10 开环		
充电电压	32	Uint16	RW	0.01kV	0~650.00kV	10kV
充电电流*	33	Uint16	RW	0.01mA 0.001A 0.01A	0.01~100mA 0.001~10A 0.01~100A	1
充电时间	34	Uint16	RW	0.01s	0~500.00s	1s
保压时间	35	Uint16	RW	0.1s	0.1~6000s	5s
电容容值*	36	Float	RW	0.1nF 0.01uF 0.001mF	0.1~10000nF 0.01~1000uF 0.001~100mF	1
电流/容值档位[4]	38	Uint16	RWP	1	0: mA/nF 1: 0.1A/uF 2: A/mF	0
充电电压限值	39	Uint16	RWP	0.01kV	0~650.00kV	100kV
充电电流限值*	40	Uint16	RWP	0.01mA 0.001A 0.01A	0.01~100mA 0.001~10A 0.01~100A	1
PWM 频率限值	41	Uint16	RWP	0.01kHz	0.1~100kHz	5kHz
PWM 脉宽限值	42	Uint16	RWP	/	0~5000us	40us
开环 PWM 频率	43	Uint16	RWP	0.01kHz	0~500.00kHz	1kHz
开环 PWM 脉宽	44	Uint16	RWP	/	0~5000us	40us
开环 PWM 数量	45	Uint16	RWP	/	0~6500	0
PI1_KP	46	float	RWP	/	0.01~100	1.0
PI1_KI	48	float	RWP	/	0.001~10	0.1
预留	50-55	Uint16	RWP	未使用		
ADC1 增益	56	float	RWP	未使用		
ADC1 偏置	58	float	RWP	未使用		
ADC2 输入电压 增益	60	float	RWP	/	/	1.0
ADC2 输入电压	62	float	RWP	/	/	0

27

偏置						
ADC3 输入电流 增益	64	float	RWP	/	/	1.0
ADC3 输入电流 偏置	66	float	RWP	/	/	0
ADC4 输出正电压 增益	68	float	RWP	/	/	1.0
ADC4 输出正电压 偏置	70	float	RWP	/	/	0
ADC5 输出正电流 增益	72	float	RWP	/	/	1.0
ADC5 输出正电流 偏置	74	float	RWP	/	/	0
ADC6 输出负电压 增益	76	float	RWP	/	/	1.0
ADC6 输出负电压 偏置	78	float	RWP	/	/	0
ADC7 输出负电流 增益	80	float	RWP	/	/	1.0
ADC7 输出负电流 偏置	82	float	RWP	/	/	0
ADC8 增益	84	float	RWP	未	使用	
ADC8 偏置	86	float	RWP	未	使用	
ADC9 增益	88	float	RWP	未	使用	
ADC9 偏置	90	float	RWP	未使用		
ADC10 增益	92	float	RWP	未使用		
ADC10 偏置	94	float	RWP	未使用		
主继电器闭合电压 阈值	96	Uint16	RWP	0.1V	0~6500.0V	10.0V
主继电器闭合时间	97	Uint16	RWP	0.1s	0~600.0s	5.0s
输入欠压保护阈值	98	Uint16	RWP	0.1V	0~6500.0V	0.0V
输入过压保护阈值	99	Uint16	RWP	0.01V	0~6500.0V	400.0V

输入过流保护阈值	100	Uint16	RWP	0.01A	0~650.00A	1.00A
充电正过压保护阈 值	101	Uint16	RWP	0.01kV	0~650.00kV	10.00kV
充电正过流保护阈 值*	102	Uint16	RWP	0.01mA 0.001A 0.01A	0.01~100mA 0.001~10A 0.01~100A	1
充电负过压保护阈 值	103	Uint16	RWP	0.01kV	-650.00~0kV	-10.00kV
充电负过流保护阈 值*	104	Uint16	RWP	0.01mA 0.001A 0.01A	0.01~100mA 0.001~10A 0.01~100A	1
闪络故障保护比例	105	Uint16	RWP	0.01	0.01~1	0.3
预留	106- 121	Uint16	RWP	未使用		
输入电流硬件保护	110	Uint16	PWR	0.01A	0~650.00A	1.00A
充电电压硬件保护	111	Uint16	PWR	0.01kV	0~650.00kV	10.00kV
充电电流硬件保护*	112	Uint16	PWR	0.01mA 0.001A 0.01A	0.01~100mA 0.001~10A 0.01~100A	1
预留	113- 121			未使用		
从机地址	122	Uint16	RWP	/	1~255	1
版本号	123	Uint16	R	/	0~0xFFFF	
密码	124	Uint32	RWP	/	1~999999	666666
权限解锁	126	Uint32	W	/	1~999999	1

[2]类型、[3]权限、[4]量纲、[4]档位解析及含义请查看8解析及注释;

*充电电流显示值、设置值、限值、保护值的单位以及电容的容值单位与38号寄存器相关。

6 功能及参数配置

结合 4 参考电路 及 5.3 寄存器定义,对PPEC-86CA3H各配置参数及可实现的功能进行阐述。

寄存器读写相关内容是给需要做上位机的研发人员做解释,使用PPEC Workbench或屏幕的研发人员,可借助本章了解PPEC-86CA3H可实现的功能,不需要学习寄存器数据的读写。

6.1 系统参数

6.1.1 权限分层实现

为了避免电源最终用户误操作修改关键运行参数,导致电源不能正常工作甚至损坏负载,因此将关键运行参数通过密码做保护,最终用户不能对其查看或修改。

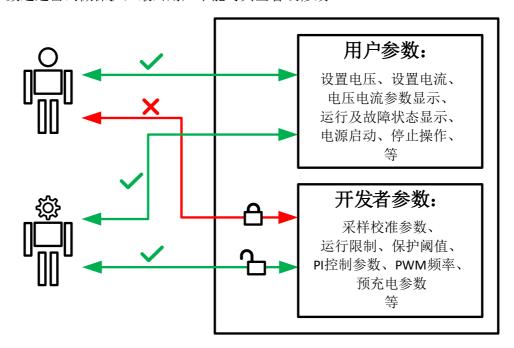


图 6.1 权限分层示意图

通讯及屏幕开发,均需要输入正确密码,才能读写开发者参数。相关寄存器为:

名称	地址	类型 ^[2]	权限[3]	量纲 ^[4]	范围	默认值
密码	124	Uint32	RWP	/	1~999999	666666
权限解锁	126	Uint32	W	/	0~999999	0

表 6.1 密码及权限寄存器

通过通讯解锁需要将正确密码写入到126号(0x7E)寄存器中,126号寄存器为Uint32双寄存器组,即高位存在127号寄存器,地位存在126号寄存器。例如写入密码666666,其十六进制码为0x000A 2C2A,写入指令为:

0x01 0x10 0x00 0x7E 0x00 0x02 0x04 0x2C 0x2A 0x00 0x0A 0xDC 0x58

密码保存在124号(0x7C)寄存器,该寄存器也会受密码保护,解锁后可以访问读写,修改密码后还需要在30号(0x1E)指令寄存器写入0x00AA才能保存密码,指令为:

0x01 0x06 0x00 0x1E 0x00 0xAA 0x69 0xB3

未解锁时,不能通过通讯、屏幕等任何方式,读取或者修改开发者参数。权限分层保护电源参数 不被任意修改,保证电源开发者的数据安全,研发企业及研发人员应妥善保管密码!

6.1.2 从机地址修改

从机地址可以修改为1-255的任意值,实现电源共通讯线控制。

表 6.2 从机地址寄存器

名称	地址	类型 ^[2]	权限[3]	量纲[4]	范围	默认值
从机地址	122	Uint16	RWP	/	1~255	1

解锁后,对122号(0x7A)寄存器写入新地址,如修改为0x02,指令为:

0x01 0x06 0x00 0x7A 0x00 0x02 0x29 0xD2

修改后还需要在30号(0x1E)指令寄存器写入0x00AA才能保存,指令为:

0x01 0x06 0x00 0x1E 0x00 0xAA 0x69 0xB3

重启后即可使用新从机地址对PPEC-86CA3H进行访问。

6.1.3 版本号

版本号存储了当前的拓扑版本信息,高8位为拓扑版本,LC串联谐振为0x08;低8位为软件版本,例:PPEC-86CA3H对应的软件版本为0x01,读取123号(0x7B)寄存器返回值为0x0101。

表 6.3 版本号寄存器

名称	地址	类型 ^[2]	权限 ^[3]	量纲[4]	范围	默认值
版本号	123	Uint16	R	/	0-0xFFFF	

读取指令为:

0x01 0x03 0x00 0x7B 0x00 0x01 0xF4 0x13

PPEC-86CA3H返回指令为:

0x01 0x03 0x02 0x08 0x01 0x7E 0x44

6.2 用户参数

6.2.1 工作状态及运行参数显示

工作状态及运行参数寄存器均为具有读取权限的寄存器,相关寄存器如下:

表 6.4 工作状态及运行参数寄存器

to the	11b 1b1	¥ ⊱∓#1[2]	-la, 17∺ [3]	定义		元 1 (石屋
名称	地址	类型 ^[2]	权限 ^[3]	量纲[4]	范围	默认值
工作状态 1	0	Uint16	R	0x00 预充电中 0x01 就绪/停止 0x02 运行 0x03 故障		
工作状态 2	1	Uint16	R		充继电器闭合 继电器闭合	
故障状态 1	2	Uint16	R	bit1=1 主继电器闭合 bit0=1 输入欠压 bit1=1 输入过压 bit2=1 输入过流 bit3=1 充电正过压 bit4=1 充电负过压 bit5=1 充电负过流 bit5=1 充电负过流 bit7=1 短路故障 bit8=1 充电超时 bit9=1 闪络故障 bit10=1 过温 bit11=1 急停 bit12=1 外部故障 bit13=1 硬件输入过流 bit14=1 硬件充电过压		
故障状态 2	3	Uint16	R	bit15=1 硬件充电过流 bit0=1 flash 存储异常		
ADC2 输入电压	5	Uint16	R	0.1v	0~6500.0V	
ADC3 输入电流	6	Uint16	R	0.01A	0~650.00A	
ADC4 输出正电压	7	Uint16	R	0.01kV	0~650.00kV	
ADC5 输出正电流	8	Uint16	R	0.01mA 0.001A	0.01~100mA 0.001~10A	

				0.01A	0.01~100A	
ADC6输出负电压	9	Uint16	R	0.01kV	-650.00~0kV	
ADC7 输出负电流	10	Uint16	R	0.01mA 0.001A 0.01A	0.01~100mA 0.001~10A 0.01~100A	

工作状态及故障状态反映了电源的运行情况,运行状态及故障状态在PPEC Workbench及屏幕上可以直接显示对应状态,由于屏幕显示控件有限,仅能同时显示一种故障。

电压及电流参数,为矫正计算过后的实际电压电流值,详细计算过程见6.3.3 采样及校正。

6.2.2 电源控制指令

电源控制寄存器实现对电源的操作,实现电源的启停控制,充电电压、充电电流、充电时间、保 压时间以及电容容值设定,切换工作模式。相关寄存器如下表,均不需要解锁操作即可进行访问、读 写。

表 6.5 电源控制指令寄存器

AT III	Lth 4-1.	类型 ^[2]	457 17∺ [3]	兌	三义	去 1 (4 編
名称	地址	兴 堡门	权限[3]	量纲[4]	范围	默认值
指令	30	Uint16	W	0x02 停山 0x03 故障 0xAA 存	b(PWM 输出) 上(PWM 停止) 章复位 储数据到 flash 复默认参数	
工作模式	31	Uint16	RW	控制方式 0x01 正列 控制方式 0x02 负列 模式方式 0x03 负列 控制方式 0x04 正句 间控制方式	医电模式:时间 医电模式:电流 医电模式:时间 医电模式:电流 负充电模式:时 负充电模式:电	0x00

充电电压	32	Uint16	RW	0.01kV	0~650.00kV	10kV
充电电流	33	Uint16	RW	0.01mA 0.001A 0.01A	0.01~100mA 0.001~10A 0.01~100A	1
充电时间	34	Uint16	RW	0.01s	0~50.00s	1s
保压时间	35	Uint16	RW	0.1s	0.1~6000s	5s
电容容值	36	Float	RW	0.1nF 0.01uF 0.001mF	0.1~10000nF 0.01~1000uF 0.001~100mF	1
电流/容值档位[4]	38	Uint16	RWP	/	0: mA/nF 1: 0.1A/uF 2: A/mF	0

^{*}需要解锁后,切换到开环模式指令才可生效。

在状态符合要求时,通过写入30号(0x1E)指令寄存器对应数据,PPEC-86CA3H执行相应的动作:

当工作状态1寄存器值为 0x01就绪/停止时,在指令寄存器写入0x01, PPEC-86CA3H启动;

当工作状态1寄存器值为 0x02运行时, 在指令寄存器写入0x02, PPEC-86CA3H停止运行;

当工作状态1寄存器值为 0x03故障时,在指令寄存器写入0x03, PPEC-86CA3H执行故障复位操作, 若故障未解锁会导致复位失败;

工作模式、充电电压、充电电流、充电时间、保压时间及任何开发者参数数据变动后,需要指令 寄存器写入0xAA保存数据,部分数据重启后生效;

忘记密码,或需要恢复默认参数时,指令寄存器写入0xBB,即可擦除全部数据,此过程不可逆!

6.3 开发者参数

未解锁时,不能通过通讯、屏幕等任何方式,读取或者修改开发者参数。权限分层保护电源参数 不被任意修改,保证电源开发者的数据安全,研发企业及研发人员应妥善保管密码!

6.3.1 电源控制参数

电源控制参数见下表。

表 6.6 电源控制参数寄存器

名称	地址	类型 ^[2]	权限[3]	量纲[4]	范围	默认值
充电电压限值	39	Uint16	RW	0.01kV	0~650.00kV	100kV
充电电流限值	40	Uint16	RW	0.01mA	0.01~100mA	1

34

				0.001A 0.01A	0.001~10A 0.01~100A	
PWM 频率限值	41	Uint16	RW	0.01kHz	0~100.00kHz	1kHz
PWM 脉宽限值	42	Uint16	RW	/	0~500us	40us
PI1_KP	46	float	RWP	/	0.01~100	1.0
PI1_KI	48	float	RWP	/	0.001~10	0.1

充电电压限值和充电电流限值,对用户参数:充电电压、充电电流进行了约束,用户通过屏幕、或PPEC Workbench或者任何方式修改,实际充电电压/电流超过充电电压/电流限值,均强制该数据回到限值,例如,充电电压限值为10.0kV时,用户通过屏幕写入20.0kV,将被自动修改为10.0kV。

PWM频率建议根据谐振频率进行设置。

PWM脉宽建议不大于周期的40%。

PI1_KP及PI1_KI为PI环参数,此处不再赘述。

6.3.2 开环调试功能

开环调试可以快速对硬件进行验证,提高开发效率。开环调试参数见下表。

名称	地址	类型 ^[2]	权限 ^[3]	量纲[4]	范围	默认值
开环 PWM 频率	43	Uint16	RWP	0.01kHz	0~100.00kHz	1kHz
开环 PWM 脉宽	44	Uint16	RWP	0.01	0~0.3	0.05
开环 PWM 数量	45	Uint16	RWP	/	0~6500	0

表 6.7 开环调试寄存器

开环调试流程如下:

- 1) 给定开环移相角及开环PWM数量;
- 2) 在31号(0x1F)工作模式寄存器写入0x10,切换到开环模式;
- 3) 在30号(0x1E)指令寄存器写入0x01, PPEC-86CA3H执行开环输出;
- 4) 当输出PWM数量达到设定值后会自动停止输出,若开环PWM数量为0,则需要在30号 (0x1E) 指令寄存器写入0x02, PPEC-86CA3H停止输出。

开环调试需要在预充电结束后进行,可以先将主继电器闭合电压阈值设置为0,可以避免不能达 到预充电条件不能进行开环调试。

开环调试需要在无故障状态下进行,若出现欠压故障,可以先将输入欠压阈值设置为0,可进行 开环调试。

6.3.3 采样及校正

PPEC-86CA3H控制器适用不同电压、电流范围,可通过改变增益及偏置实现显示值与实际输出值的匹配。

名称 地址 类型[2] 权限[3] 量纲[4] 范围 默认值 ADC2 输入电压增益(Gain) / / 60 float **RWP** 1.0 ADC2 输入电压偏置(Bias) 62 float **RWP** / 0 ADC3 输入电流增益(Gain) / 64 **RWP** float 1.0 ADC3 输入电流偏置(Bias) 66 float **RWP** ADC4输出正电压增益(Gain) 68 **RWP** / float 1.0 ADC4 输出正电压偏置(Bias) 70 **RWP** 0 float ADC5 输出正电流增益(Gain) 72 float RWP 1.0 ADC5 输出正电流偏置(Bias) 74 **RWP** float ADC6输出负电压增益(Gain) 76 float **RWP** / 1.0 ADC6 输出负电压偏置(Bias) 78 float **RWP** / 0 ADC7输出负电流增益(Gain) / 80 float **RWP** 1.0 ADC7 输出负电流偏置(Bias) float **RWP** 0 82

表 6.8 采样校正寄存器

各通道的显示值 $U_{Display}$ (5-10号寄存器对应值)与对应采样通道引脚电压 U_{AIN} 关系如下:

$$U_{Display} = Gain \times (U_{AIN} - Bias)$$

例1,设计输出电压为200V电源设备(后面简称设备),使用图 4.7 双电源供电闭环霍尔电压传感器参考电路,参数参考表 4.3 双电源霍尔电压采样阻值选取参考选取200V参数,具体配置参见下图。

理论电压偏置为0V,可以计算实际200V电压时,理论对应采样通道引脚电压 U_{AIN} :

$$U_{AIN} = \frac{U_{real}R_{s1}}{R_{s2}}n = \frac{200V \times 160\Omega}{40.2k\Omega} \times 2500:1000 = 1.99V$$

则ADC4输出电压增益为

$$Gain_{ADC4} = \frac{U_{real}}{U_{AIN}} = \frac{200V}{1.99V} = 100.5$$

或者可以快速计算:

$$Gain_{ADC4} = \frac{R_{s2}}{nR_{s1}} = \frac{40.2\text{k}\Omega}{2500/1000 \times 160\Omega} = 100.5$$

若霍尔存在0.01V偏置,即输出电压为0V时,对应采样通道引脚电压 U_{AIN} 为0.01V,ADC4输出电压偏置 $Bais_{ADC4}$ 为0.01V。

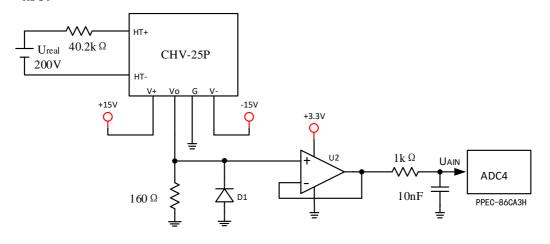


图 6.2 200V采样电路

当设定好偏置和增益后,若采样存在偏差,可以通过下面两种方式再次校正:

方式1). 有外部稳压源,在设备非运行状态,外部稳压源连接到设备输出,按如下方法校正。

外部电压源输出额定电压(额定电压:设备的设计输出电压最大值),记录设备输出电压显示值 U1(屏幕 / PPEC workbench / 7号寄存器回读值),记录示波器高压探头测量输出电压U1'。外部电压 源输出0.1倍额定电压,记录设备输出电压显示值U2,记录示波器高压探头测量输出电压U2'。

方式2). 无外部稳压源,设备连接合适负载,开环可输出稳定电压,按如下方法校正。

开环模式下,调整移相角,待示波器高压探头测量值达到额定电压(设备的设计输出电压最大值)附近,记录设备输出电压显示值U1(屏幕 / PPEC workbench / 7号寄存器回读值),记录示波器高压探头测量输出电压U1'。调整PWM脉宽,待示波器高压探头测量值达到0.1倍额定电压附近,记录设备输出电压显示值U2,记录示波器高压探头测量输出电压U2'。

校准计算公式如下:

$$Gain' = \frac{U1' - U2'}{U1 - U2}Gain$$

$$Bias' = \frac{U2}{Gain} - \frac{U2'}{Gain'} + Bias$$

Gain为原增益, Bias为原偏置, Gain'为校正后增益, Bias'为校正后偏置。

校正后需要写入对应寄存器并操作存储到flash。

例2,设计输出电流为30A电源,使用图 4.10 单电源供电闭环霍尔电流传感器参考电路,依据表 4.6 选用霍尔型号为CHB-15MP。

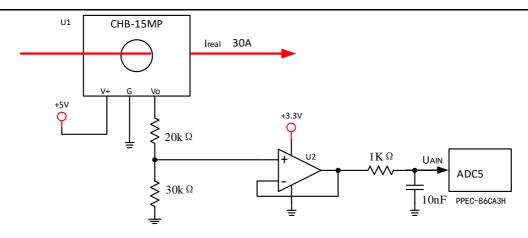


图 6.3 30A电流采样电路

理论电压偏置为1.5V,霍尔内部集成采样电阻 $R_s = 50\Omega$,可以快速计算,ADC5输出电流增益为

$$Gain_{ADC5} = \frac{1}{nR_S} = \frac{1}{1/1200 \times 50\Omega} = 24$$

若分压后霍尔存在-0.01V偏置,即输出电压为0V时,对应采样通道引脚电压 U_{AIN} 为1.49V,ADC5输出电压流置Bais $_{ADC5}$ =-0.01V。

6.3.4 预充电参数

大功率电源直流母线电容较大,通过预充电电路可以降低上电冲击。相关寄存器如下表。

地址 类型[2] 权限[3] 量纲[4] 名称 范围 默认值 主继电器闭合电压阈值 96 0.1V0~6500.0V 10.0V Uint16 **RWP** 主继电器闭合时间 97 Uint16 **RWP** 0.1s $0 \sim 600.0s$ 5.0s

表 6.9 预充电寄存器

现结合电路对相关寄存器功能进行阐述。

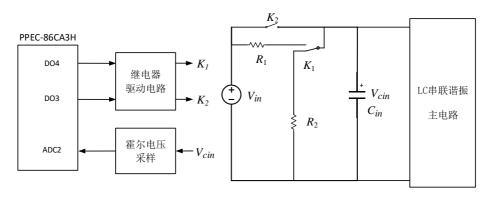


图 6.4 预充电电路

控制电路上电后,预充电继电器 K_1 闭合,外部电源通过电阻 R_1 对母线电容 C_{in} 充电,需要同时达到以下两个条件, K_2 主继电器闭合:

- 1) 电容电压 V_{in} 达到主继电器闭合电压阈值;
- 2) 自 K_1 闭合开始计时,时长主继电器闭合时间。

上图中, R_2 为泄能电阻,掉电后自动泄放 C_{in} 电荷,不需要可去掉。

若不需要预充电继电器, K_1 继电器可去掉,对应位置短接即可。

6.3.5 软件保护阈值

通过配置软件保护阈值各寄存器,可以在参数达到保护条件时触发对应保护功能,电源执行停机并报故障,避免故障扩大,相关寄存器如下表。

表 6.10 保护阈值参数寄存器

名称	地址	类型 ^[2]	权限[3]	量纲[4]	范围	默认值
输入欠压保护阈值	98	Uint16	RWP	0.1V	0~6500.0V	0.0V
输入过压保护阈值	99	Uint16	RWP	0.01kV	0~650.00kV	10.0kV
输入过流保护阈值	100	Uint16	RWP	0.01A	0~650.00A	1.00A
充电正电压保护阈 值	101	Uint16	RWP	0.01kV	0~650.00kV	10.00kV
充电正电流保护阈 值	102	Uint16	RWP	0.01mA 0.001A 0.01A	0.01~100mA 0.001~10A 0.01~100A	1
充电负过压保护阈 值	103	Uint16	RWP	0.01kV	-650.00~0kV	-10.00kV
充电负过流保护阈 值	104	Uint16	RWP	0.01mA 0.001A 0.01A	0.01~100mA 0.001~10A 0.01~100A	1
闪络故障保护比例	105	Uint16	RWP	0.01	0.01~1	0.3

6.3.6 硬件保护阈值

通过配置硬件保护阈值各寄存器,可以在参数达到硬件保护条件时触发对应保护功能,电源执行停机并报故障,避免故障扩大,软件保护与硬件保护阈值关系应为:硬件保护阈值>软件保护阈值,相关寄存器如下表。

表 6.11 保护阈值参数寄存器

名称	地址	类型 ^[2]	权限 ^[3]	量纲[4]	范围	默认值
----	----	-------------------	-------------------	-------	----	-----

输入电流硬件保护	110	Uint16	PWR	0.01A	0~650.00A	1.00A
充电电压硬件保护	111	Uint16	PWR	0.01kV	0~650.00kV	10.00kV
充电电流硬件保护	112	Uint16	PWR	0.01mA 0.001A 0.01A	0.01~100mA 0.001~10A 0.01~100A	1

7 封装尺寸

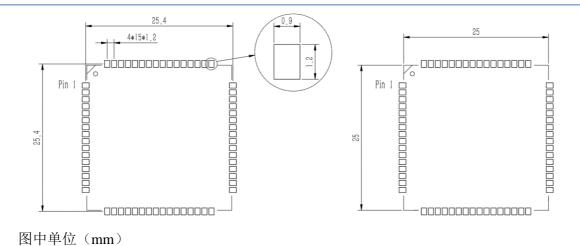


图 7.1 封装尺寸

8 解析及注释

[1] 拓扑型号及代码

代码	拓扑型号	代码	拓扑型号
A	移相全桥变换器	В	LLC谐振变换器
С	Buck/Boost半桥变换器	D	双向有源全桥变换器
Е	单相逆变(整流)器	F	三相逆变(整流)器
G	Vienna整流器	Н	LC串联谐振变换器

[2] 类型

寄存器类型分为: Uint16、int16、Uint32、float。

Uint16为无符号整形unsigned int,数据范围为0-0xFFFF,表示0-65535;

int16为整形int,数据范围-32768~+32767;

Uint32为无符号长整形unsigned long,数据范围为0-0xFFFF FFFF,一般作为特殊寄存器使用,占两个寄存器地址,其中高16位占本地址,低16位占本地址+1;

float为浮点型,占两个寄存器地址,其中高16位占本地址,低16位占本地址+1;

[3] 权限

寄存器权限表明本寄存器的访问权限

W 为写入权限, 可写入数据, 无权限写该寄存器不生效;

R 为读取权限,可地区数据,无权限读该寄存器返回0;

P为保护权限,"权限解锁"寄存器(126)写入正确密码后能操作,否则读返回0,写不生效。

[4] 量纲

寄存器值的单位,例:设定电压量纲是0.1V,寄存器值为100表示100*0.1V=10V。

[5] 档位

高压档:电流单位为mA,电容单位为nF;中压档:电流单位为0.1A,电容单位为uF;低压档:电流单位为A,电容单位为mF。

[6] 理论增益

指理论计算得到的被测量值 U_{Real} 与对应采样通道引脚电压 U_{AIN} 关系如下:

$$U_{Real} = Gain \times (U_{AIN} - Bias)$$

理论增益Gain为: U_{AIN} 增加1V, U_{Real} 的增量。该值用于采样校正,详见6.3.3采样及校正。

[7] 理论偏置

接[6],理论偏置*Bias*为:被测量值为0时,采样电路输出到采样引脚的电压。该值用于采样校正,详见6.3.3采样及校正。

让天下没有难做的电源!

扫码获取更多相关资讯

武汉森木磊石科技有限公司

全国服务热线: 027-87505008

官网: http://www.senmuleishi.com

地址: 武汉市洪山区国际企业中心栖凤楼

